Pinpointing drivers of widespread colonization of Legionella pneumophila in a green building: Roles of water softener system, expansion tank, and reduced occupancy

Author:

Joshi Sayalee,Richard Rain,Levya Carlos,Harrison Joanna Ciol,Saetta Daniella,Sharma Naushita,Crane Lucas,Mushro Noelle,Dieter Lucien,Morgan Grace V.,Heida Ashley,Welco Bennett,Boyer Treavor H.,Westerhoff Paul,Hamilton Kerry A.

Abstract

IntroductionLegionella pneumophila is an opportunistic pathogen that is a key contributor to drinking water-associated disease outbreaks in the United States. Prolonged water stagnation periods in building plumbing systems due to low occupancy, especially during building shutdowns, breaks, and holidays, can lead to water quality deterioration and (re)colonization of buildings with L. pneumophila. Water monitoring in buildings typically relies on grab samples with small datasets.MethodsIn this study, a larger dataset was created by sampling a Leadership in Energy and Environmental Design (LEED)-certified data-rich commercial building for L. pneumophila and physical-chemical water quality during the COVID-19 pandemic after reduced building occupancy. A proxy for human occupancy rates using WIFI logins was recorded throughout the study period.ResultsL. pneumophila was observed in grab samples taken throughout the building, where concentrations generally increased with greater distances from the building point of entry to locations throughout the building. Factors conducive to microbial growth were identified in the building including fluctuations in water temperatures, lack of chlorine residual, a low water heater setpoint, colonized water-saving fixtures, prolonged stagnation throughout the building; especially in an expansion tank designed to reduce pressure issues during demand fluctuations, and the presence of oversized softener tanks with ion exchange resin that contributed to chlorine residual removal as well as colonization of the resin with L. pneumophila.DiscussionFlushing and thermal disinfection alone did not resolve the problem, and replacement of the expansion tank ultimately resolved the L. pneumophila issue. As ad-hoc approaches are logistically- and time-intensive, more proactive approaches are needed for informing preventative and corrective actions for reducing the risk of exposure to opportunistic pathogens in the building plumbing.

Funder

National Science Foundation

U.S. Environmental Protection Agency

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3