On composite sampling for monitoring generic and antibiotic-resistant coliforms in irrigation ponds

Author:

Stocker Matthew Daniel,Smith Jaclyn Elizabeth,Pachepsky Yakov

Abstract

The presence of fecal bacteria in irrigation waters is well documented in causing human and animal illnesses, with the potential for antibiotic-resistant pathogens to increase the seriousness of these infections. Approaches to sampling fecal and antibiotic-resistant bacteria (ARB) in irrigation waters used in raw food production require standardization to quantify and discern potential spatiotemporal trends in antibiotic-resistant bacteria. Composite sampling is widely used to reduce the cost and time of processing samples while estimating spatial or temporal variation in contaminant concentrations. The objectives of this work were to evaluate the spatial variation in generic and ARB in several irrigation ponds and assess the effectiveness of composite sampling in estimating the average of individual samples. In a grid-like fashion, five irrigation ponds were sampled for generic and antibiotic-resistant E. coli and total coliforms using the Colilert Quanti-Tray/2000 system with and without tetracycline and cefotaxime added. Individual samples were composited in sample sets including all samples, only bank samples, and only interior samples. Coefficients of variations in general were high (> 100%) for generic bacteria and higher for ARB (140%−290%). Concentrations of all measured bacteria were lower in the pond interior locations than the banks. The percentage of tetracycline-resistant E. coli varied among ponds from averages of 0% to 23%. No cefotaxime-resistant E. coli were detected in any of the ponds whereas cefotaxime-resistant total coliforms were detected at each site. The average percentage of cefotaxime-resistant total coliforms varied from 1.1 to 13.8% among ponds. E. coli concentrations in composite samples did not significantly differ from either the mean or median of the individual sample sets in 89% and 83% of cases, respectively, indicating composite sampling to be effective in capturing spatial variation of both generic and ARB. Results of this work can be used to aid in the development of better strategies for surveilling antibiotic resistance in aquatic environments.

Funder

Agricultural Research Service

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3