DEM-based analysis of water inrush process of underground engineering face with intermittent joints in karst region

Author:

Zhang ShuguoORCID,Dai Ling,Yuan Xiaohu,Wang Qirui,Xu Jingmao

Abstract

Water inrush disaster of karst tunnel often lead to significant economic losses and serious casualties, which is an urgent engineering roadblock to be solved in the construction of tunnel in karst area. In this paper, three-dimensional discrete element method considering fluid-solid coupling effect and structural characteristics of water-mud resistant rock mass is adopted to systematically study the evolution law of displacement field and seepage field of intermittent joint type water-mud resistant rock mass of tunnel face and its water inrush critical characteristics during the process of sequential excavation of karst tunnel close to the frontal high-pressure water-rich karst cavity. The results show that: With the tunnel face gradually approaching the front-concealed high-pressure water-rich karst cavity, the stability of water-mud resistant rock mass is increasingly affected by high-pressure karst water, and karst water pressure gradually becomes the main control factor. The closer the tunnel face is to the front-concealed high-pressure water-rich karst cavity, the greater the extrusion displacement of karst tunnel face and its increase amplitude, the higher damage degree of water-mud resistant rock mass of face. With the advance of tunnel excavation, the intermittent cracks in the water-mud resistant rock mass of face gradually connect and form a stable hydraulic connection. The flow velocity and seepage pressure of karst water rise significantly at the moment of overall instability of face and the formation of water inrush channel, showing obvious precursor characteristics. The research achievements provide a reference for early warning and prevention and control of water inrush disaster of karst tunnel face.

Publisher

EJSE International

Subject

Civil and Structural Engineering

Reference20 articles.

1. Chen F (2018) Evolutional law of water inrush in water-resistant rock mass with non-persistent joints ahead of karst tunnel face. Master’s thesis, Henan polytechnic uni-versity, Jiaozuo

2. Chen JJ (2016) Study of Risk Assessment of Inrush Water Hazards in Karst Tunnels. Ph.D thesis, Jilin University, Changchun

3. Do TN, Wu JH (2020) Verifying discontinuous deformation analysis simulations of the jointed rock mass behavior of shallow twin mountain tunnels. Int J Rock Mech Min 130: 104322

4. He ZY, Guo JQ, Chen F, Tan JK (2017) Analysis of typical dis-aster-causing structure and water inrush model of tunnel. The Chinese Journal of Geological Hazard and Control 28(2): 97–107

5. Jiang HM,Li L, Rong SL, Wang MY, Xia YP, Zhang ZC (2017) Model test to investigate waterproof-resistant slab minimum safety thickness for water inrush geohazards. Tunn Undergr Sp Tech 2017: 35–42

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3