Improved Clamped Z-Source Converter with Optimized Maximum Power Point Tracker for Hybrid Renewable Energy Systems Based Energy Management System

Author:

Saranya Mani,Giftson Samuel George

Abstract

In light of the intermittent and seasonal nature of wind and solar energy, electrical systems are becoming more problematic to operate. The purpose of the work is to establish an energy storage system that helps to minimize such operational challenges, which are essential to improve grid stability and reliability. The tasks solved in the article to achieve the given goal are the following: incorporating an energy management system with the aid of improved converter and optimized maximum power point (MPPT) for (Photovoltaic) PV and PMSG (permanent magnet synchronous generator) based wind system. On comparing with conventional Z-source converters, a novel improved clamped Z-source converter, which is utilized in this work has high efficiency with low THD and it has the capacity to protect electrical circuits against damage caused by short circuits, overcurrent and overvoltage. The Pulse Width Modulation (PWM) rectifier is implemented to convert AC-DC supply obtained from the PMSG wind system. Firefly optimization with an aid of Radial Basis Function Neural Network (RBFNN) technique is employed as an MPPT system for extracting optimal power from photovoltaic system. The excess energy obtained from the hybrid sources are stored in the battery and it is controlled by the recurrent neural network (RNN) with the bidirectional converter. The overall developed system is executed in MATLAB software and the most important outcomes are demonstrated in terms of high efficiency with 91.2%, high tracking efficiency of 98.54% and reduced THD of 2.45% respectively. The significance of results obtained in this research lies in the advancement of renewable energy integration technologies. By overcoming the challenges associated with intermittent energy sources, the developed system contributes to the improvement of grid stability and reliability.

Publisher

Technical University of Moldova

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3