Artificial intelligence-based model for COVID-19 prognosis incorporating chest radiographs and clinical data; a retrospective model development and validation study

Author:

Walston Shannon L12,Matsumoto Toshimasa23,Miki Yukio2,Ueda Daiju23ORCID

Affiliation:

1. Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan

2. Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University,1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan

3. Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University,1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan

Abstract

Objectives: The purpose of this study was to develop an artificial intelligence-based model to prognosticate COVID-19 patients at admission by combining clinical data and chest radiographs. Methods: This retrospective study used the Stony Brook University COVID-19 dataset of 1384 inpatients. After exclusions, 1356 patients were randomly divided into training (1083) and test datasets (273). We implemented three artificial intelligence models, which classified mortality, ICU admission, or ventilation risk. Each model had three submodels with different inputs: clinical data, chest radiographs, and both. We showed the importance of the variables using SHapley Additive exPlanations (SHAP) values. Results: The mortality prediction model was best overall with area under the curve, sensitivity, specificity, and accuracy of 0.79 (0.72–0.86), 0.74 (0.68–0.79), 0.77 (0.61–0.88), and 0.74 (0.69–0.79) for the clinical data-based model; 0.77 (0.69–0.85), 0.67 (0.61–0.73), 0.81 (0.67–0.92), 0.70 (0.64–0.75) for the image-based model, and 0.86 (0.81–0.91), 0.76 (0.70–0.81), 0.77 (0.61–0.88), 0.76 (0.70–0.81) for the mixed model. The mixed model had the best performance (p value < 0.05). The radiographs ranked fourth for prognostication overall, and first of the inpatient tests assessed. Conclusions: These results suggest that prognosis models become more accurate if AI-derived chest radiograph features and clinical data are used together. Advances in knowledge: This AI model evaluates chest radiographs together with clinical data in order to classify patients as having high or low mortality risk. This work shows that chest radiographs taken at admission have significant COVID-19 prognostic information compared to clinical data other than age and sex.

Publisher

British Institute of Radiology

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3