Prediction of dose deposition matrix using voxel features driven machine learning approach

Author:

Jiao Shengxiu1,Zhao Xiaoqian1,Yao Shuzhan1

Affiliation:

1. Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China

Abstract

Objectives: A dose deposition matrix (DDM) prediction method using several voxel features and a machine learning (ML) approach is proposed for plan optimization in radiation therapy. Methods: Head and lung cases with the inhomogeneous medium are used as training and testing data. The prediction model is a cascade forward backprop neural network where the input is the features of the voxel, including 1) voxel to body surface distance along the beamlet axis, 2) voxel to beamlet axis distance, 3) voxel density, 4) heterogeneity corrected voxel to body surface distance, 5) heterogeneity corrected voxel to beamlet axis, and (6) the dose of voxel obtained from the pencil beam (PB) algorithm. The output is the predicted voxel dose corresponding to a beamlet. The predicted DDM was used for plan optimization (ML method) and compared with the dose of MC-based plan optimization (MC method) and the dose of pencil beam-based plan optimization (PB method). The mean absolute error (MAE) value was calculated for full volume relative to the dose of the MC method to evaluate the overall dose performance of the final plan. Results: For patient with head tumor, the ML method achieves MAE value 0.49 × 10−4 and PB has MAE 1.86 × 10−4. For patient with lung tumor, the ML method has MAE 1.42 × 10−4 and PB has MAE 3.72 × 10−4. The maximum percentage difference in PTV dose coverage (D98) between ML and MC methods is no more than 1.2% for patient with head tumor, while the difference is larger than 10% using the PB method. For patient with lung tumor, the maximum percentage difference in PTV dose coverage (D98) between ML and MC methods is no more than 2.1%, while the difference is larger than 16% using the PB method. Conclusions: In this work, a reliable DDM prediction method is established for plan optimization by applying several voxel features and the ML approach. The results show that the ML method based on voxel features can obtain plans comparable to the MC method and is better than the PB method in achieving accurate dose to the patient, which is helpful for rapid plan optimization and accurate dose calculation. Advances in knowledge: Establishment of a new machine learning method based on the relationship between the voxel and beamlet features for dose deposition matrix prediction in radiation therapy.

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3