Machine-learning approach to predict molecular subgroups of medulloblastoma using multiparametric MRI-based tumor radiomics

Author:

Saju Ann Christy1,Chatterjee Abhishek1,Sahu Arpita2,Gupta Tejpal1,Krishnatry Rahul1,Mokal Smruti3,Sahay Ayushi4,Epari Sridhar4,Prasad Maya5,Chinnaswamy Girish5,Agarwal Jai Prakash1,Goda Jayant S16

Affiliation:

1. Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India

2. Department of Radiodiagnosis, Tata Memorial Center, Mumbai, Maharashtra, India

3. Clinical Research Secretariat, Tata Memorial Center, Mumbai, Maharashtra, India

4. Department of Pathology, Tata Memorial Center, Mumbai, Maharashtra, India

5. Department of Pediatric Oncology, Tata Memorial Center, Mumbai, Maharashtra, India

6. Homi Bhabha National Institute, Mumbai, Maharashtra, India

Abstract

Objective: Image-based prediction of molecular subgroups of Medulloblastoma (MB) has the potential to optimize and personalize therapy. The objective of the study is to distinguish between broad molecular subgroups of MB using MR–Texture analysis. Methods: Thirty-eight MB patients treated between 2007 and 2020 were retrospectively analyzed. Texture analysis was performed on contrast enhanced T1(T1C) and T2 weighted (T2W) MR images. Manual segmentation was performed on all slices and radiomic features were extracted which included first order, second order (GLCM - Grey level co-occurrence matrix) and shape features. Feature enrichment was done using LASSO (Least Absolute Shrinkage and Selection Operator) regression and thereafter Support Vector Machine (SVM) and a 10-fold cross-validation strategy was used for model development. The area under Receiver Operator Characteristic (ROC) curve was used to evaluate the model. Results: A total of 174 and 170 images were obtained for analysis from the Axial T1C and T2W image datasets. One hundred and sixty-four MR based texture features were extracted. The best model was arrived at by using a combination of 30 GLCM and six shape features on T1C MR sequence. A 10-fold cross-validation demonstrated an AUC of 0.93, 0.9, 0.93, and 0.93 in predicting WNT, SHH, Group 3, and Group 4 MB subgroups, respectively. Conclusion: Radiomic analysis of MR images in MB can predict molecular subgroups with acceptable degree of accuracy. The strategy needs further validation in an external dataset for its potential use in ab initio management paradigms of MBs. Advances in knowledge: Medulloblastoma can be classified into four distinct molecular subgroups using radiomic feature classifier from non-invasive Multiparametric Magnetic resonance imaging. This can have future ramifications in the extent of surgical resection of Medulloblastoma which can ultimately result in reduction of morbidity.

Publisher

British Institute of Radiology

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3