Pretreatment structural and arterial spin labeling MRI is predictive for p53 mutation in high-grade gliomas

Author:

Mao Jiaji12,Deng Dabiao3,Yang Zehong1,Wang Wensheng3,Cao Minghui1,Huang Yun4,Shen Jun12

Affiliation:

1. Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, China

2. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, China

3. Department of Medical Imaging, Guangdong 999 Brain Hospital, No. 578 Shatai Road South, Guangzhou, China

4. Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan II Road, Guangzhou, China

Abstract

Objectives: To determine the performance of pretreatment structural and arterial spin labelling (ASL) MRI in predicting p53 mutation in patients with high-grade gliomas (HGGs). Methods: Pre-treatment structural and ASL MRI were performed in 57 patients with histologically confirmed HGGs and information of p53 status. Whole-lesion histogram analysis of cerebral blood flow (CBF) images of the enhancing tumour and the peritumoral oedema in the HGGs were performed. Visually AcceSAble Rembrandt Images features were used as qualitative analysis. The differences of ASL histogram parameters and Visually AcceSAble Rembrandt Images features between HGGs with or without p53 mutation were analyzed with post hoc correction for multiple comparisons. LASSO regression was performed to select the optimal features that could predict p53 mutation, followed by receiver operating characteristic analysis to determine the predictive efficacy. Results: A total of 33 HGGs with p53 mutation and 24 without p53 mutation were included. HGGs with mutant p53 showed lower CBFpercentile5 and CBFuniformity of the enhancing tumour (p < 0.05) and higher prevalence of the qualitative MRI feature of enhancing tumour crossing midline (ETCM) (p < 0.05) as compared with HGGs with wild-type p53. LASSO regression showed that the CBFuniformity of the enhancing tumour and ETCM were predictive features for p53 mutation. CBFuniformity showed an acceptable performance in predicting p53 mutation (area under the curve = 0.721), when combined with the feature of ETCM, its predictive efficacy was significantly improved (area under the curve = 0.814, p = 0.012). Conclusion: An integrated pre-treatment structural and ASL MRI can help to predict p53 mutation in HGGs.

Publisher

British Institute of Radiology

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3