Optimal allocation of bank resources and risk reduction through portfolio decentralization
-
Published:2022-11-24
Issue:2
Volume:11
Page:92-143
-
ISSN:
-
Container-title:International Journal of Economic Sciences
-
language:
-
Short-container-title:IJOES
Author:
Mohammadi Arezoo,Minnoei Mehrzad,Fathi Zadollah,Ali Keramati Mohamamd,Baktiari Hossein
Abstract
The main concern of all economic companies is the resources equipping and allocating them in different economic sectors with the aim of maximizing profit and minimizing risk. Decentralization is one of the important factors that reduce investment risk. The investors plan to create investment by carefully planning and collecting sufficient information on the economic situation and analyzing the situation of various industries. As an economic enterprise, banks are looking for short- and long-term investments in a types of loans ,such as bailment of a capital , civil participation, reward, etc, which guarantees the return of their capital. In this paper, considering the condition of a bank as an economic enterprise, a model is presented which not only increases profit but also reduces risk. Two objective functions have been defined that the first objective is to minimize the risk and the second objective function is to maximize the of the bank profit, which is used by robust programming and Malvi Sim model. In this paper, we have investigated the Risky and non-Risky Partfolio and the optimal portfolio of bank assets from scenario based solution of the model and by using PSO and Genetic Optimization Algorithm. At all levels of confidence and optimal values of risk based on the estimation of SPP-CVAR method by Particle Swarm Algorithm (PSA) is less than genetic algorithm, which indicates better performance of Particle Swarm Algorithm (PSA) than Genetic Algorithm (GA). Also, the optimum wealth obtained from PSA solution is higher at all levels of confidence than the corresponding value of Genetic Algorithm (GA), and this is another reason to confirm the performance of PSO algorithm compared to the Genetic Algorithm (GA). The values of the first goal function, obtained from the PSO algorithm, for all confidence levels are lower than those of the genetic algorithm. The optimum wealth obtained from PSA is higher than genetic algorithm. At 0.9 level, the value of LR of kupiec statistics for the SPP-CVAR method was less than the Chi-square statistics (Critical value) which was assumed to be acceptable.
Publisher
European Research Center (EURREC)
Subject
Visual Arts and Performing Arts,Communication,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Cardiology and Cardiovascular Medicine,Molecular Biology,Molecular Biology,Structural Biology,Catalysis,General Engineering,Physical and Theoretical Chemistry,Process Chemistry and Technology,Catalysis,Process Chemistry and Technology,Biochemistry,Bioengineering,Catalysis,Cell Biology,Genetics,Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献