Consistency Is Key: A Secondary Analysis of Wearable Motion Sensor Accuracy Measuring Knee Angles Across Activities of Daily Living Before and After Knee Arthroplasty

Author:

Marchand Robert C.1,Taylor Kelly B.1,Kaczynski Emily C.1,Richards Skye2,Hutchinson Jayson B.2,Khodabakhsh Shayan2ORCID,Chapman Ryan M.23ORCID

Affiliation:

1. Ortho Rhode Island, Wakefield, RI 02879, USA

2. Department Kinesiology, University of Rhode Island, Kingston, RI 02881, USA

3. Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA

Abstract

Background: Monitoring knee range of motion (ROM) after total knee arthroplasty (TKA) via clinically deployed wearable motion sensors is increasingly common. Prior work from our own lab showed promising results in one wearable motion sensor system; however, we did not investigate errors across different activities. Accordingly, herein we conducted secondary analyses of error using wearable inertial measurement units (IMUs) quantifying sagittal knee angles across activities in TKA patients. Methods: After Institutional Review Board (IRB) approval, TKA patients were recruited for participation in two visits (n = 20 enrolled, n = 5 lost to follow-up). Following a sensor tutorial (MotionSense, Stryker, Mahwah, NJ, USA), sensors and motion capture (MOCAP) markers were applied for data capture before surgery. One surgeon then performed TKA. An identical data capture was then completed postoperatively. MOCAP and wearable motion sensor knee angles were computed during a series of activities and compared. Two-way ANOVA evaluated the impact of time (pre- vs. post-TKA) and activity on average error. Another two-way ANOVA was completed, assessing if error at local maxima was different than at local minima and if either was different across activities. Results: Pre-TKA/post-TKA errors were not different. No differences were noted across activities. On average, the errors were under clinically acceptable thresholds (i.e., 4.9 ± 2.6° vs. ≤5°). Conclusions: With average error ≤ 5°, these specific sensors accurately quantify knee angles before/after surgical intervention. Future investigations should explore leveraging this type of technology to evaluate preoperative function decline and postoperative function recovery.

Funder

Stryker Orthopaedics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3