Expanding Genotype–Phenotype Correlation of CLCNKA and CLCNKB Variants Linked to Hearing Loss

Author:

Yun Yejin1ORCID,Park Sang Soo1,Lee Soyoung2,Seok Heeyoung3,Park Seongyeol2ORCID,Lee Sang-Yeon145

Affiliation:

1. Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea

2. GENOME INSIGHT TECHNOLOGY Inc., Daejeon 34051, Republic of Korea

3. Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea

4. Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea

5. Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea

Abstract

The ClC-K channels CLCNKA and CLCNKB are crucial for the transepithelial transport processes required for sufficient urinary concentrations and sensory mechanoelectrical transduction in the cochlea. Loss-of-function alleles in these channels are associated with various clinical phenotypes, ranging from hypokalemic alkalosis to sensorineural hearing loss (SNHL) accompanied by severe renal conditions, i.e., Bartter’s syndrome. Using a stepwise genetic approach encompassing whole-genome sequencing (WGS), we identified one family with compound heterozygous variants in the ClC-K channels, specifically a truncating variant in CLCNKA in trans with a contiguous deletion of CLCNKA and CLCNKB. Breakpoint PCR and Sanger sequencing elucidated the breakpoint junctions derived from WGS, and allele-specific droplet digital PCR confirmed one copy loss of the CLCNKA_CLCNKB contiguous deletion. The proband that harbors the CLCNKA_CLCNKB variants is characterized by SNHL without hypokalemic alkalosis and renal anomalies, suggesting a distinct phenotype in the ClC-K channels in whom SNHL predominantly occurs. These results expanded genotypes and phenotypes associated with ClC-K channels, including the disease entities associated with non-syndromic hearing loss. Repeated identification of deletions across various extents of CLCNKA_CLCNKB suggests a mutational hotspot allele, highlighting the need for an in-depth analysis of the CLCNKA_CLCNKB intergenic region, especially in undiagnosed SNHL patients with a single hit in CLCNKA.

Funder

SNUH Kun-hee Lee Child Cancer & Rare Disease Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3