Identification of Flavanone 3-Hydroxylase Gene Family in Strawberry and Expression Analysis of Fruit at Different Coloring Stages

Author:

Zhang Yanqi1,Feng Yongqing1,Yang Shangwen1,Qiao Huilan1,Wu Aiyuan1,Yang Jinghua1,Ma Zonghuan1

Affiliation:

1. College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China

Abstract

The color of strawberry fruit is an important appearance quality index that affects the marketability of fruit, and the content and type of anthocyanin are two of the main reasons for the formation of fruit color. At present, the research on anthocyanin synthesis mainly focuses on the phenylpropane metabolic pathway, and the F3H gene family is an important member of this metabolic pathway. Therefore, in order to clarify the role of flavanone 3-hydroxylase (F3H) in regulating anthocyanin accumulation in strawberry, we identified F3H gene family members in strawberry and analyzed their bioinformatics and expression at different fruit color stages. The results showed that the strawberry F3H family contains 126 members, which are distributed on seven chromosomes and can be divided into six subgroups. The promoter region of strawberry F3H gene family contains light response elements, abiotic stress response elements and hormone response elements. Intraspecic collinearity analysis showed that there were six pairs of collinearity of the F3H gene. Interspecific collinearity analysis showed that there were more collinearity relationships between strawberry and apple, grape and Arabidopsis, but less collinearity between strawberry and rice. Via tissue-specific expression analysis, we found that the expression levels of FvF3H48, FvF3H120 and FvF3H74 were higher in the stages of germination, growth, flowering and fruit setting. The expression levels of FvF3H42 and FvF3H16 were higher in seeds. The expression levels of FvF3H16 and FvF3H11 were higher in the ovary wall of stage 1, stage 2, stage 3 and stage 5. FvF3H15 and FvF3H48 were highly expressed in the pericardium, anther, receptacle and anther. Real-time fluorescence quantitative PCR showed the expression changes in F3H in the fruit coloring process. The results indicate that the expression levels of most members were higher during the S3 stage, such as FvF3H7, FvF3H16, FvF3H32, FvF3H82, FvF3H89, FvF3H92 and FvF3H112. FvF3H63 and FvF3H104 exhibited particularly high expression levels during the S1 stage, with some genes also showing elevated expression during the S4 stage, including FvF3H13, FvF3H27, FvF3H66 and FvF3H103. FvF3H58, FvF3H69, FvF3H79 and FvF3H80 showed higher expression levels during the S2 stage. These findings lay the groundwork for elucidating the biological functions of the strawberry F3H gene family and the selection of related genes.

Funder

Innovation and Entrepreneurship Training Program for Students of Gansu Agricultural University

Higher education innovation fund project

National Natural Science Foundation of China

2022 Youth Talent Promotion Project

Gansu Agricultural University youth mentor fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference40 articles.

1. Shashank, K., and Sanjay, G. (2021). Dietary phytochemicals and their role in cancer chemoprevention. J. Cancer Metastasis Treat., 7.

2. Deciphering the genetic architecture of fruit color in strawberry;Alexandre;J. Exp. Bot.,2023

3. Identification of anthocyanin compositions and expression analysis of key related genes in Fragaria × ananassa;Yan;Acta Hortic. Sin.,2023

4. New insights into the regulation of anthocyanin biosynthesis in fruits;Jaakola;Trends Plant Sci.,2013

5. Functional analysis of an anthocyanin synthase gene StANS in potato;Zhang;Sci. Hortic.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3