SOX18 Promotes the Proliferation of Dermal Papilla Cells via the Wnt/β-Catenin Signaling Pathway

Author:

He Mingliang1ORCID,Lv Xiaoyang23,Cao Xiukai23ORCID,Yuan Zehu23ORCID,Getachew Tesfaye4,Li Yutao5ORCID,Wang Shanhe13ORCID,Sun Wei123

Affiliation:

1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

2. Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

3. International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China

4. International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia

5. CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Brisbane, QLD 4067, Australia

Abstract

SRY-box transcription factor 18 (SOX18) is known to play a crucial role in the growth and development of hair follicles (HF) in both humans and mice. However, the specific effect of SOX18 on sheep hair follicles remains largely unknown. In our previous study, we observed that SOX18 was specifically expressed within dermal papilla cells (DPCs) in ovine hair follicles, leading us to investigate its potential role in the growth of hair follicles in sheep. In the present study, we aimed to examine the effect of SOX18 in DPCs and preliminarily study its regulatory mechanism through RNA-seq. We initially found that the overexpression of SOX18 promoted the proliferation of DPCs compared to the negative control group, while the interference of SOX18 had the opposite effect. To gain further insight into the regulatory mechanism of SOX18, we conducted RNA-seq analysis after knocking down SOX18 in Hu sheep DPCs. The result showed that the Wnt/β-Catenin signaling pathway was involved in the growth process of DPC after SOX18 knockdown. Subsequently, we investigated the effect of SOX18 on the Wnt/β-Catenin signaling pathway in DPCs using TOP/FOP-flash, qRT-PCR, and Western blot (WB) analysis. Our data demonstrated that SOX18 could activate the Wnt/β-Catenin signaling pathway in DPCs. Additionally, we observed that SOX18 could rescue the proliferation of DPCs after inhibiting the Wnt/β-Catenin signaling pathway. These findings underscore the essential role of SOX18 as a functional molecule governing the proliferation of DPCs. Additionally, these findings also greatly enhance our understanding of the role of SOX18 in the proliferation of DPCs and the growth of wool in Hu sheep.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Major New Varieties of Agricultural Projects in Jiangsu Province

National Natural Science Foundation of China-CGIAR

Major Project of Natural Science Foundation of Xinjiang Uyghur Autonomous Region

High-end Foreign Expert Introduction Project

Jiangsu 333 Distinguished Talents Project Foundation

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Distinguished Talents Project Foundation of Yangzhou University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3