Molecular Analysis of Dihydropteroate Synthase Gene Mutations in Pneumocystis jirovecii Isolates among Bulgarian Patients with Pneumocystis Pneumonia

Author:

Tsvetkova Nina1ORCID,Harizanov Rumen1ORCID,Rainova Iskra1ORCID,Ivanova Aleksandra1,Yancheva-Petrova Nina2

Affiliation:

1. Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria

2. Department for AIDS, Specialized Hospital for Active Treatment of Infectious and Parasitic Diseases, Ivan Geshev Blvd. 17, 1431 Sofia, Bulgaria

Abstract

Pneumocystis jirovecii pneumonia (PCP) is a significant cause of morbidity and mortality in immunocompromised people. The widespread use of trimethoprim-sulfamethoxazole (TMP-SMZ) for the treatment and prophylaxis of opportunistic infections (including PCP) has led to an increased selection of TMP-SMZ-resistant microorganisms. Sulfa/sulfone resistance has been demonstrated to result from specific point mutations in the DHPS gene. This study aims to investigate the presence of DHPS gene mutations among P. jirovecii isolates from Bulgarian patients with PCP. A total of 326 patients were examined via real-time PCR targeting the P. jirovecii mitochondrial large subunit rRNA gene and further at the DHPS locus. P. jirovecii DNA was detected in 50 (15.34%) specimens. A 370 bp DHPS locus fragment was successfully amplified in 21 samples from 19 PCP-positive patients, which was then purified, sequenced, and used for phylogenetic analysis. Based on the sequencing analysis, all (n = 21) P. jirovecii isolates showed DHPS genotype 1 (the wild type, with the nucleotide sequence ACA CGG CCT at codons 55, 56, and 57, respectively). In conclusion, infections caused by P. jirovecii mutants potentially resistant to sulfonamides are still rare events in Bulgaria. DHPS genotype 1 at codons 55 and 57 is the predominant P. jirovecii strain in the country.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference93 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3