Turbulent Micropolar Open-Channel Flow

Author:

Sofiadis George1ORCID,Liakopoulos Antonios1ORCID,Palasis Apostolos12ORCID,Sofos Filippos2ORCID

Affiliation:

1. Hydromechanics and Environmental Engineering Laboratory, Department of Civil Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece

2. Condensed Matter Physics Laboratory, Department of Physics, University of Thessaly, 35100 Lamia, Greece

Abstract

The present paper focuses on the investigation of the turbulent characteristics of an open-channel flow by employing the micropolar model. The underlying model has already been proven to correctly describe the secondary phase of turbulent wall-bounded flows. The open-channel case comprises an ideal candidate to further test the micropolar model as many environmental flows carry a secondary phase, the behavior of which is of great interest for applications such as sedimentation transport and debris flow. Direct Numerical Simulations (DNSs) have been carried out on an open channel for Reb = 11,200 based on mean crossectional velocity, channel height, and the fluid kinematic viscosity. The simulated results are compared against previous experimental as well as Langrangian DNS data of similar flows, with excellent agreement. The micropolar model is capable of describing the same problem but in an Eulerian frame, thus significantly simplifying the computational cost and complexity.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3