Tuning the Electronic and Optical Properties of the Novel Monolayer Noble-Transition-Metal Dichalcogenides Semiconductor β-AuSe via Strain: A Computational Investigation

Author:

Chen Qing-YuanORCID,Zhao Bo-Run,Zhao Yi-Fen,Yang Hai,Xiong KaiORCID,He Yao

Abstract

The strain-controlled structural, electronic, and optical characteristics of monolayer β-AuSe are systematically studied using first-principles calculations in this paper. For the strain-free monolayer β-AuSe, the structure is dynamically stable and maintains good stability at room temperature. It belongs to the indirect band gap semiconductor, and its valence band maximum (VBM) and conduction band minimum (CBM) consist of hybrid Au-d and Se-p electrons. Au–Se is a partial ionic bond and a partial polarized covalent bond. Meanwhile, lone-pair electrons exist around Se and are located between different layers. Moreover, its optical properties are anisotropic. As for the strained monolayer β-AuSe, it is susceptible to deformation by uniaxial tensile strain. It remains the semiconductor when applying different strains within an extensive range; however, only the biaxial compressive strain is beyond −12%, leading to a semiconductor–semimetal transition. Furthermore, it can maintain relatively stable optical properties under a high strain rate, whereas the change in optical properties is unpredictable when applying different strains. Finally, we suggest that the excellent carrier transport properties of the strain-free monolayer β-AuSe and the stable electronic properties of the strained monolayer β-AuSe originate from the p–d hybridization effect. Therefore, we predict that monolayer β-AuSe is a promising flexible semiconductive photoelectric material in the high-efficiency nano-electronic and nano-optoelectronic fields.

Funder

National Natural Science Foundation of China

Major Science and Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3