Novel MicroRNA-Regulated Transcript Networks Are Associated with Chemotherapy Response in Ovarian Cancer

Author:

Topouza Danai G.ORCID,Choi Jihoon,Nesdoly Sean,Tarnouskaya Anastasiya,Nicol Christopher J. B.,Duan Qing LingORCID

Abstract

High-grade serous ovarian cancer (HGSOC) is a highly lethal gynecologic cancer, in part due to resistance to platinum-based chemotherapy reported among 20% of patients. This study aims to generate novel hypotheses of the biological mechanisms underlying chemotherapy resistance, which remain poorly understood. Differential expression analyses of mRNA- and microRNA-sequencing data from HGSOC patients of The Cancer Genome Atlas identified 21 microRNAs associated with angiogenesis and 196 mRNAs enriched for adaptive immunity and translation. Coexpression network analysis identified three microRNA networks associated with chemotherapy response enriched for lipoprotein transport and oncogenic pathways, as well as two mRNA networks enriched for ubiquitination and lipid metabolism. These network modules were replicated in two independent ovarian cancer cohorts. Moreover, integrative analyses of the mRNA/microRNA sequencing and single-nucleotide polymorphisms (SNPs) revealed potential regulation of significant mRNA transcripts by microRNAs and SNPs (expression quantitative trait loci). Thus, we report novel transcriptional networks and biological pathways associated with resistance to platinum-based chemotherapy in HGSOC patients. These results expand our understanding of the effector networks and regulators of chemotherapy response, which will help to improve the management of ovarian cancer.

Funder

Canadian Institutes of Health Research

Queen's University

Queen's University National Scholar Award

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3