Status of Aluminum Oxide Gate Dielectric Technology for Insulated-Gate GaN-Based Devices

Author:

Calzolaro Anthony,Mikolajick ThomasORCID,Wachowiak Andre

Abstract

Insulated-gate GaN-based transistors can fulfill the emerging demands for the future generation of highly efficient electronics for high-frequency, high-power and high-temperature applications. However, in contrast to Si-based devices, the introduction of an insulator on (Al)GaN is complicated by the absence of a high-quality native oxide for GaN. Trap states located at the insulator/(Al)GaN interface and within the dielectric can strongly affect the device performance. In particular, although AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors (MIS-HEMTs) provide superior properties in terms of gate leakage currents compared to Schottky-gate HEMTs, the presence of an additional dielectric can induce threshold voltage instabilities. Similarly, the presence of trap states can be detrimental for the operational stability and reliability of other architectures of GaN devices employing a dielectric layer, such as hybrid MIS-FETs, trench MIS-FETs and vertical FinFETs. In this regard, the minimization of trap states is of critical importance to the advent of different insulated-gate GaN-based devices. Among the various dielectrics, aluminum oxide (Al2O3) is very attractive as a gate dielectric due to its large bandgap and band offsets to (Al)GaN, relatively high dielectric constant, high breakdown electric field as well as thermal and chemical stability against (Al)GaN. Additionally, although significant amounts of trap states are still present in the bulk Al2O3 and at the Al2O3/(Al)GaN interface, the current technological progress in the atomic layer deposition (ALD) process has already enabled the deposition of promising high-quality, uniform and conformal Al2O3 films to gate structures in GaN transistors. In this context, this paper first reviews the current status of gate dielectric technology using Al2O3 for GaN-based devices, focusing on the recent progress in engineering high-quality ALD-Al2O3/(Al)GaN interfaces and on the performance of Al2O3-gated GaN-based MIS-HEMTs for power switching applications. Afterwards, novel emerging concepts using the Al2O3-based gate dielectric technology are introduced. Finally, the recent status of nitride-based materials emerging as other gate dielectrics is briefly reviewed.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3