Study on Self-Humidification in PEMFC with Crossed Flow Channels and an Ultra-Thin Membrane

Author:

Wang Chenlong12,Chen Xiaosong12,Xiang Xin12,Zhang Heng12ORCID,Huang Zhiping12,Huang Xinhao12,Zhan Zhigang12

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Key Laboratory of Fuel Cells, Wuhan 430070, China

Abstract

In this study, a 3D model of a proton exchange membrane fuel cell (PEMFC) with crossed channels and an ultra-thin membrane is developed to investigate the feasibility of self-humidification; experiments utilizing a PEMFC stack with identical configurations are conducted to validate the simulation results and further investigate the effects of various operating conditions (OCs) on self-humidification. The results indicate that the crossed flow channel leads to enhanced uniformity of water distribution, resulting in improved cell performance under low/no humidification conditions. External humidifiers for the anode can be removed since the performance difference is negligible (≤3%) between RHa = 0% and 100%. Self-humidification can be achieved in the stack at 90 °C or below with an appropriate back pressure among 100–200 kPa. As the current density increases, there is a gradual convergence and crossing of the voltage at low RH with that at high RH, and the crossover points are observed at 60–80 °C with suitable pressure when successful self-humidification is achieved. Below the current density of the point, the stack’s performance is inferior at lower RH due to membrane unsaturation, and conversely, the performance is inferior at higher RH due to flooding; this current density decreases with higher pressure and lower temperature.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3