Macroscopic and Microscopic Characteristics of Strength Degradation of Silty Soil Improved by Regenerated Polyester Fibers under Dry–Wet Cycling

Author:

Liu Xiaoyan1,Han Meng2,Liu Tong3,Liu Lulu4

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China

3. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China

4. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The structural stability of silt foundations, particularly sensitive to moisture content, can be severely compromised by recurring wetting and drying processes. This not only threatens the foundational integrity but also raises grave concerns about the long-term safety of major civil engineering endeavors. Addressing this critical issue, our study delves into the transformative effects of reclaimed polyester fiber on subgrade silt exposed to such environmental stressors. Through rigorous wet–dry cycle tests on this enhanced soil, we evaluate shifts in shear strength across varying confining pressures. We also dissect the interplay between average pore diameter, particle distribution, and morphology in influencing the soil’s microstructural responses to these cycles. A detailed analysis traces the structural damage timeline in the treated soil, elucidating the intertwined micro–macro dynamics driving strength reduction. Key discoveries indicate a notably non-linear trajectory of shear strength degradation, marked by distinct phases of rapid, subdued, and stabilized strength attrition. Alterations within the micropores induce a rise in both their count and size, ultimately diminishing the total volume proportion of the reinforced soil. Intriguingly, particle distribution is directly tied to the wet–dry cycle frequency, while the fractal dimension of soil particles consistently wanes. This research identifies cement hydrolysis and pore expansion as the dominant culprits behind the observed macroscopic strength degradation due to incessant wet–dry cycles. These revelations hold profound implications for risk management and infrastructural strategizing in areas dominated by silt foundations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Changsha University of Science and Technology

Jiangsu Province Excellent Postdoctoral Program

China Postdoctoral Science Foundation

Young Elite Scientist Sponsorship program by CAST

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3