Synthesis and Properties of Modified Biodegradable Polymers Based on Caprolactone

Author:

Fortună Maria E.1ORCID,Ungureanu Elena2ORCID,Rotaru Răzvan1,Bargan Alexandra1ORCID,Ungureanu Ovidiu C.3,Brezuleanu Carmen O.2,Harabagiu Valeria1ORCID

Affiliation:

1. Institute of Macromolecular Chemistry “Petru Poni”, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania

2. “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania

3. “Vasile Goldis” Western University of Arad, 94 the Boulevard of the Revolution, 310025 Arad, Romania

Abstract

In this paper, the synthesis and characterization of two polycaprolactone-polydimethylsiloxane (PDMS-CL) copolymers with biodegradable properties are reported. A comparative study was carried out using an aminopropyl-terminated polydimethylsiloxane macro-initiator (APDMS) with two different molecular weights. The copolymers (PDMS-CL-1 and PDMS-CL-2) were obtained by ring-opening polymerization of ɛ-caprolactone using APDMS as initiators and stannous 2-ethylhexanoate as a catalyst. The copolymer’s structures were confirmed by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H-NMR) spectra, and energy dispersion spectroscopy (EDX). Surface morphology was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The hydrophobic properties of the copolymers were demonstrated by the water contact angle and water vapor sorption capacity. Additionally, biological tests were conducted on San Marzano type tomato plants (Lypercosium esculentum) to assess the synthesized copolymers’ susceptibility to the environment in terms of biological stability and metabolic activity. The biodegradation of PDMS-CL-1 and PDMS-CL-2 copolymers does not have a dangerous effect on the metabolic activity of plants, which makes it a convenient product in interaction with the environment.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3