Method for Simulating the Anti-Damage Performance of Consolidation Soil Balls at the Roots of Seedlings during Transportation Using Consolidated Soil Columns

Author:

Wang Shaoli1,Song Shengju2,Yang Xuping3,Xiong Zhengqi4,Luo Chaoxing4,Wei Donglu4,Wang Hong4,Liu Lili4,Yang Xinxin5,Li Shaofeng1,Xia Yongxiu1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China

2. R&D Center, China Academy of Launch Vehicle Technology, Beijing 100076, China

3. Security Department, Chinese Academy of Forestry, Beijing 100091, China

4. College of Material and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China

5. Management Center of Songshushan Nature Reserve, Inner Mongolia, Songshushan Forestry Center, Wengniute Banner, Chifeng 024500, China

Abstract

In the process of landscaping or afforestation in challenging terrain, in order to improve the survival rate of transplanted seedlings, it is necessary to transplant seedlings with a mother soil ball attached. During transportation, the soil ball at the root of the seedlings is very susceptible to breakage due to compression, bumps, and collisions. In order to ensure the integrity of the soil ball of the transplanted seedlings and improve the survival rate of seedlings, a method of chemically enhancing the soil surface strength was employed. Specifically, a polymer-based soil consolidating agent was used to solidify the root balls of the seedlings. To examine the abrasion resistance performance of the soil balls formed by consolidating the surface with polymer adhesive during the transportation process, we utilized a polymer-based consolidating agent to prepare test soil columns and developed a method to simulate the damage resistance performance of seedling root balls during transportation using these soil columns. The method primarily encompasses two aspects of testing: compressive strength testing of the consolidated soil columns and resistance to transportation vibration testing. The first method for testing the resistance to transportation vibration of the consolidated soil columns is a combination test that includes three sets of tests: highway truck transportation vibration testing, combined wheel vehicle transportation vibration testing, and impact testing. Although the method is cumbersome, testing is more accurate. The second method for testing the resistance to transportation vibration of the consolidated soil columns involves simultaneously testing multiple consolidated soil columns using a simulated transportation vibration test platform. The testing method is concise and efficient, and the test results are more intuitive. The combined assessment of the resistance to transportation vibration and compressive strength testing of the consolidated soil columns allows for a comprehensive evaluation of the soil columns’ resistance to damage during transportation. This study mainly provides a quick and effective method for detecting the damage resistance of consolidated soil columns/balls during transportation, providing technical support for the application of polymer-based consolidation agents in the field of seedling transplantation.

Funder

National Natural Science Foundation of China

Major Project of Agricultural Biological Breeding

Fundamental Research Funds of CAF

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3