Receptor-Targeted Carbon Nanodot Delivery through Polymer Caging and Click Chemistry-Supported LRP1 Ligand Attachment

Author:

Zhang Fengrong1,Benli-Hoppe Teoman1,Guo Wei2,Seidl Johanna1,Wang Yi3,Huang Rongqin2,Wagner Ernst1ORCID

Affiliation:

1. Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany

2. Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China

3. Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China

Abstract

Carbon nanodots present resistance to photobleaching, bright photoluminescence, and superior biocompatibility, making them highly promising for bioimaging applications. Herein, nanoprobes were caged with four-armed oligomers and subsequently modified with a novel DBCO–PEG-modified retro-enantio peptide ligand reL57, enhancing cellular uptake into U87MG glioma cells highly expressing low-density lipoprotein receptor-related protein 1 (LRP1). A key point in the development of the oligomers was the incorporation of ε-amino-linked lysines instead of standard α-amino-linked lysines, which considerably extended the contour length per monomer. The four-armed oligomer 1696 was identified as the best performer, spanning a contour length of ~8.42 nm for each arm, and was based on an altering motive of two cationic ε-amidated lysine tripeptides and two tyrosine tripeptides for electrostatic and aromatic stabilization of the resulting formulations, cysteines for disulfide-based caging, and N-terminal azidolysines for click-modification. This work highlights that well-designed four-armed oligomers can be used for noncovalent coating and covalent caging of nanoprobes, and click modification using a novel LRP1-directed peptide ligand facilitates delivery into receptor-expressing target cells.

Funder

China Scholarship Council

DFG (Deutsche Forschungsgemeinschaft)–NSFC (National Science Foundation China) Joint Sino-German Research Project

DFG Collaborative Research Centers

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3