Synthesis and Characterization of a Novel Nanosized Polyaniline

Author:

Banjar Mohd Faizar1ORCID,Joynal Abedin Fatin Najwa1ORCID,Fizal Ahmad Noor Syimir2,Muhamad Sarih Norazilawati3,Hossain Md. Sohrab4ORCID,Osman Hakimah5,Khalil Nor Afifah16ORCID,Ahmad Yahaya Ahmad Naim7ORCID,Zulkifli Muzafar7ORCID

Affiliation:

1. Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur (UniKL), Alor Gajah 78000, Melaka, Malaysia

2. Centre for Sustainability of Ecosystem & Earth Resources (Pusat ALAM), Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, Gambang 26300, Pahang, Malaysia

3. Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia

4. HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Fundamental and Applied Sciences Department, Universiti Teknologi Petronas (UTP), Seri Iskandar 32610, Perak, Malaysia

5. Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia

6. Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai 90110, Songkla, Thailand

7. Green Chemistry and Sustainability Cluster, Branch Campus, Malaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur (UniKL), Taboh Naning, Alor Gajah 78000, Melaka, Malaysia

Abstract

Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI–prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet–visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm2 scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3