Spatial Scale Effect on Fractional Vegetation Coverage Changes and Driving Factors in the Henan Section of the Yellow River Basin

Author:

Wang Rongxi1,Wang Hongtao1,Wang Cheng12,Duan Jingjing1,Zhang Shuting1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454150, China

2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Vegetation plays a crucial role in terrestrial ecosystems, and the FVC (Fractional Vegetation Coverage) is a key indicator reflecting the growth status of vegetation. The accurate quantification of FVC dynamics and underlying driving factors has become a hot topic. However, the scale effect on FVC changes and driving factors has received less attention in previous studies. In this study, the changes and driving factors of FVC at multiple scales were analyzed to reveal the spatial and temporal change in vegetation in the Henan section of the Yellow River basin. Firstly, based on the pixel dichotomy model, the FVC at different times and spatial scales was calculated using Landsat-8 data. Then, the characteristics of spatial and temporal FVC changes were analyzed using simple linear regression and CV (Coefficient of Variation). Finally, a GD (Geographic Detector) was used to quantitatively analyze the driving factors of FVC at different scales. The results of this study revealed that (1) FVC showed an upward trend at all spatial scales, increasing by an average of 0.55% yr−1 from 2014 to 2022. The areas with an increasing trend in FVC were 10.83% more than those with a decreasing trend. (2) As the spatial scale decreased, the explanatory power of the topography factors (aspect, elevation, and slope) for changes in FVC was gradually strengthened, while the explanatory power of climate factors (evapotranspiration, temperature, and rainfall) and anthropogenic activities (night light) for changes in FVC decreased. (3) The q value of evapotranspiration was always the highest across different scales, peaking notably at a spatial scale of 1000 m (q = 0.48).

Funder

the State Key Project of the National Natural Science Foundation of China—Key projects of joint fund for regional innovation and development

National Natural Science Foundation of China

Fundamental Research Funds for the Universities of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3