Affiliation:
1. Shaanxi Key Laboratory of GreenPreparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
2. Xi’an Hantang Analysis and Test Co., Ltd., Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
Abstract
Soluble aluminum alloy materials used in underground operational tools are synthesized via a high-temperature smelting process. The microstructure and composition distribution of the alloy were analyzed using X-ray diffraction, metallographic microscopy, and scanning electron microscopy with energy-dispersive X-ray and electron backscatter diffraction techniques. The mechanical properties were evaluated using a universal testing machine and hardness tester, while solubility assessments were conducted in a constant-temperature water bath. This study focuses on the plasticity and dissolution characteristics of Al-Mg-Ga-Sn-In alloys with varying Mg contents. The tensile strength (σb) of the alloy was 181.99 MPa, with an elongation (δ) of 27.49% and cross-sectional shrinkage (φ) of 11.67% at a magnesium content of 3.0 wt.%. Additionally, in the compressive test, the compressive yield strength (σsc) was recorded at 188.32 MPa, while the compression rate (δ) was 27.06% and the section expansion rate (φ) was 138.66%. Furthermore, the alloy demonstrated the ability to dissolve spontaneously in water at 90 °C, exhibiting an average dissolution rate of 1.0 g·h−1cm−2 and a maximum dissolution rate of 3.25 g·h−1cm−2 after 12.0 h. Consequently, this alloy composition not only satisfies the requirements for rapid solubility but also exhibits favorable plasticity, providing a novel reference for the selection of soluble aluminum alloy materials.
Funder
Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献