Magnetic Cross-Linked Enzyme Aggregates of a Transpeptidase-Specialized Variant (N450D) of Bacillus licheniformis γ-Glutamyl Transpeptidase: An Efficient and Stable Biocatalyst for l-Theanine Synthesis

Author:

Chi Meng-Chun,Huang Yu-Fen,Lu Bo-Yuan,Lin Min-Guan,Wang Tzu-Fan,Lin Long-LiuORCID

Abstract

γ-Glutamyl transpeptidase (GGT) catalyzes the transfer of glutathione’s γ-glutamyl group and related γ-glutamyl amides to water, amino acids or peptides, and utilizes a conserved Thr residue to process its own polypeptide chain into a large and a small subunit that then assemble to produce a catalytically competent enzyme. In this study, the magnetic cross-linked enzyme aggregates (mCLEAs) of a transpeptidase-specialized variant (N450D) of Bacillus licheniformis GGT were successfully prepared with optimized process parameters viz.1.25:1 (v/v) of isopropanol to N450D (0.3 mg/mL) ratio/0.02:1 (w/w) of enzyme to 3-aminopropyl triethoxysilane (APTES)-coated magnetic nanoparticle ratio/20 mM of glutaraldehyde. The prepared magnetic nanoparticles and immobilized enzyme (N450D-mCLEAs) were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscope integrated with energy dispersive X-ray spectroscopy (FESEM/EDS), and superparamagnetic analysis. As compared with free enzyme, N450D-mCLEAs displayed significantly higher heat resistance at temperatures of 55 and 60 °C, and had a greater stability over a storage period of one month. The immobilized enzyme could also be reused for 10 consecutive biocatalytic cycles with no significant reduction in the percent yield of l-theanine. Conclusively, this immobilization strategy surely provides a meaningful glance of developing N450D-mediated biocatalysis for the production of physiologically important γ-glutamyl compounds.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3