Abstract
Analyzing the combination of involving parameters impacting the efficiency of solar air heaters is an attractive research areas. In this study, cost-effective double-pass perforated glazed solar air heaters (SAHs) packed with wire mesh layers (DPGSAHM), and iron wools (DPGSAHI) were fabricated, tested and experimentally enhanced under different operating conditions. Forty-eight iron pieces of wool and fifteen steel wire mesh layers were located between the external plexiglass and internal glass, which is utilized as an absorber plate. The experimental outcomes show that the thermal efficiency enhances as the air mass flow rate increases for the range of 0.014–0.033 kg/s. The highest thermal efficiency gained by utilizing the hybrid optimized DPGSAHM and DPGSAHI was 94 and 97%, respectively. The exergy efficiency and temperature difference (∆T) indicated an inverse relationship with mass flow rate. When the DPGSAHM and DPGSAHI were optimized by the hybrid procedure and employing the Taguchi-artificial neural network, enhancements in the thermal efficiency by 1.25% and in exergy efficiency by 2.4% were delivered. The results show the average cost per kW (USD 0.028) of useful heat gained by the DPGSAHM and DPGSAHI to be relatively higher than some double-pass SAHs reported in the literature.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献