Classifying Tremor Dominant and Postural Instability and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics

Author:

Gong N. Jabin1,Clifford Gari D.23,Esper Christine D.4,Factor Stewart A.4,McKay J. Lucas2ORCID,Kwon Hyeokhyen2

Affiliation:

1. School of Computer Science, College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

2. Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA

3. Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA

4. Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA

Abstract

Characterizing motor subtypes of Parkinson’s disease (PD) is an important aspect of clinical care that is useful for prognosis and medical management. Although all PD cases involve the loss of dopaminergic neurons in the brain, individual cases may present with different combinations of motor signs, which may indicate differences in underlying pathology and potential response to treatment. However, the conventional method for distinguishing PD motor subtypes involves resource-intensive physical examination by a movement disorders specialist. Moreover, the standardized rating scales for PD rely on subjective observation, which requires specialized training and unavoidable inter-rater variability. In this work, we propose a system that uses machine learning models to automatically and objectively identify some PD motor subtypes, specifically Tremor-Dominant (TD) and Postural Instability and Gait Difficulty (PIGD), from 3D kinematic data recorded during walking tasks for patients with PD (MDS-UPDRS-III Score, 34.7 ± 10.5, average disease duration 7.5 ± 4.5 years). This study demonstrates a machine learning model utilizing kinematic data that identifies PD motor subtypes with a 79.6% F1 score (N = 55 patients with parkinsonism). This significantly outperformed a comparison model using classification based on gait features (19.8% F1 score). Variants of our model trained to individual patients achieved a 95.4% F1 score. This analysis revealed that both temporal, spectral, and statistical features from lower body movements are helpful in distinguishing motor subtypes. Automatically assessing PD motor subtypes simply from walking may reduce the time and resources required from specialists, thereby improving patient care for PD treatments. Furthermore, this system can provide objective assessments to track the changes in PD motor subtypes over time to implement and modify appropriate treatment plans for individual patients as needed.

Funder

The McCamish Center for Parkinson’s Disease Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3