The Development of a High-Efficiency Small Induction Furnace for a Glass Souvenir Production Process Using Multiphysics

Author:

Thongsri Jatuporn1ORCID,Poopanya Piyawong2ORCID,Sriphalang Sanguansak3ORCID,Pattanapichai Sorathorn1ORCID

Affiliation:

1. Computer Simulation in Engineering Research Group, College of Advanced Manufacturing Innovation, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

2. Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubonratchatani 34000, Thailand

3. Program of Chemistry, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubonratchatani 34000, Thailand

Abstract

A small induction furnace (SIF), which has the important components of copper coils, a ceramic jig, and a graphite crucible, employed for a glass souvenir production process, has been developed as a form of clean technology for multiphysics, consisting of electromagnetics analysis (EA) and thermal analysis (TA). First, two experiments were established to measure parameters for multiphysics results validation and boundary condition settings. Then, the parameters were applied to multiphysics, in which the EA revealed magnetic flux density (B) and ohmic losses, and the TA reported a temperature consistent with the experimental results, confirming the multiphysics credibility. Next, a ferrite flux concentrator was added to the SIF during development. Multiphysics revealed that PC40 ferrite, as a flux concentrator with a suitable design, could increase B by about 159% compared to the conventional SIF at the power of 1000 W. As expected, the B increases alongside the increase in power applied to the coils, and is more densely concentrated in the flux concentrator than in other regions, enhancing the production process efficacy. Lastly, the developed SIF was employed in the actual process and received good feedback from users. The novel research findings are the developed SIF and methodology, exclusively designed for this research and practically employed for a glass souvenir production process.

Funder

College of Advanced Manufacturing Innovation, King Mongkut’s Institute of Technology Ladkrabang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3