Development and Analysis of a Global Floating Wind Levelised Cost of Energy Map

Author:

Vilajuana Llorente Sergi1ORCID,Rapha José Ignacio1ORCID,Domínguez-García José Luis1

Affiliation:

1. Power Systems Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2a, Sant Adrià de Besòs, 08930 Barcelona, Spain

Abstract

Floating offshore wind (FOW) is rapidly gaining interest due to its large potential. In this regard, it is of special interest to determine the best locations for its installation. One of the main aspects when evaluating the feasibility of a project is the levelised cost of energy (LCOE), but there are many variables to consider when calculating it for FOW, and plenty of them are hard to find when the scope is all the suitable areas worldwide. This paper presents the calculation and analysis of the global LCOE with particular focus on the best countries and territories from an economic point of view, considering four types of platforms: semi-submersible, barge, spar, and tension leg platform (TLP). The model takes into account, on the one hand, wind data, average significant wave height, and distance to shore for an accurate calculation of delivered energy to the onshore substation and, on the other hand, bathymetry, distances, and existing data from projects to find appropriate functions for each cost with regression models (e.g., manufacturing, installation, operation and maintenance (O&M), and decommissioning costs). Its results can be used to assess the potential areas around the world and identify the countries and territories with the greatest opportunities regarding FOW. The lowest LCOE values, i.e., the optimal results, correspond to areas where wind resources are more abundant and the main variables of the site affecting the costs (water depth, average significant wave height, distance to shore, and distance to port) are as low as possible. These areas include the border between Venezuela and Colombia, the Canary Islands, Peru, the border between Western Sahara and Mauritania, Egypt, and the southernmost part of Argentina, with LCOEs around 90 €/MWh. Moreover, there are many areas in the range of 100–130 €/MWh.

Publisher

MDPI AG

Reference59 articles.

1. (2023, August 07). Sustainable Development Goals. 13 Climate Action. Available online: https://www.un.org/sustainabledevelopment/climate-change/.

2. Hutchinson, M., and Zhao, F. (2023). Global Wind Report 2023, The Global Wind Energy Council.

3. Wind Europe (2023, August 07). Wind Energy Today. Available online: https://windeurope.org/about-wind/wind-energy-today/.

4. Decoupling Wind–Wave–Wake Interactions in a Fixed-Bottom Offshore Wind Turbine;Bossuyt;Appl. Energy,2022

5. Lerch, M. (2020). Technical-Economic Analysis, Modeling and Optimization of Floating Offshore Wind Farms. [Ph.D. Thesis, Polytechnic University of Catalonia].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3