Multi-Asset Defect Hotspot Prediction for Highway Maintenance Management: A Risk-Based Machine Learning Approach

Author:

Karimzadeh ArashORCID,Shoghli OmidrezaORCID,Sabeti Sepehr,Tabkhi Hamed

Abstract

Transportation agencies constantly strive to tackle the challenge of limited budgets and continuously deteriorating highway infrastructure. They look for optimal solutions to make intelligent maintenance and repair investments. Condition prediction of highway assets and, in turn, prediction of their maintenance needs are key elements of effective maintenance optimization and prioritization. This paper proposes a novel risk-based framework that expands the potential of available data by considering the probabilistic susceptibility of assets in the prediction process. It combines a risk score generator with machine learning to forecast the hotspots of multiple defects while considering the interrelations between defects. With this, we developed a scalable algorithm, Multi-asset Defect Hotspot Predictor (MDHP), and then demonstrated its performance in a real-world case. In the case study, MDHP predicted the hotspots of three defects on paved ditches, considering the interrelation between paved ditches and five nearby assets. The results demonstrate an acceptable accuracy in predicting hotspots while highlighting the interrelation between adjacent assets and their contribution to future defects. Overall, this study offers a scalable approach with contribution in data-driven multi-asset maintenance planning with potential benefits to a broader range of linear infrastructures such as sewers, water networks, and railroads.

Funder

VIRGINIA DEPARTMENT OF TRANSPORTATION (VDOT) and LEIDOS

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference81 articles.

1. Critical Issues in Transportation 2019,2019

2. AASHTO Transportation Asset Management Guide: A Focus on Implementation,2011

3. Bridge life-cycle performance and cost: analysis, prediction, optimisation and decision-making

4. Big data-based deterioration prediction models and infrastructure management: towards assetmetrics

5. A multi-objective decision-making approach for the sustainable maintenance of roadways;Shoghli,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3