Direction of Arrival Estimation of Coherent Sources via a Signal Space Deep Convolution Network

Author:

Zhao Jun1,Gui Renzhou1,Dong Xudong2ORCID,Zhao Yufei3

Affiliation:

1. College of Electronic and Information Engineering, Tongji University, Shanghai 201800, China

2. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

In the field of direction of arrival (DOA) estimation for coherent sources, subspace-based model-driven methods exhibit increased computational complexity due to the requirement for eigenvalue decomposition. In this paper, we propose a new neural network, i.e., the signal space deep convolution (SSDC) network, which employs the signal space covariance matrix as the input and performs independent two-dimensional convolution operations on the symmetric real and imaginary parts of the input signal space covariance matrix. The proposed SSDC network is designed to address the challenging task of DOA estimation for coherent sources. Furthermore, we leverage the spatial sparsity of the output from the proposed SSDC network to conduct a spectral peak search for obtaining the associated DOAs. Simulations demonstrate that, compared to existing state-of-the-art deep learning-based DOA estimation methods for coherent sources, the proposed SSDC network achieves excellent results in both matching and mismatching scenarios between the training and test sets.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Plan of Shanghai Science and Technology Commission

Institute of Carbon Neutrality of Tongji University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3