Integrating Sensor Embeddings with Variant Transformer Graph Networks for Enhanced Anomaly Detection in Multi-Source Data

Author:

Meng Fanjie1,Ma Liwei2ORCID,Chen Yixin3ORCID,He Wangpeng1ORCID,Wang Zhaoqiang4,Wang Yu2

Affiliation:

1. School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China

2. School of Mechanical Engineering, Xi’an Jiao Tong University, Xi’an 710049, China

3. Key Laboratory of Expressway Construction Machinery of Shaanxi Province, Chang’an University, Xi’an 710064, China

4. High-Tech Institute of Xi’an, Xi’an 710025, China

Abstract

With the rapid development of sensor technology, the anomaly detection of multi-source time series data becomes more and more important. Traditional anomaly detection methods deal with the temporal and spatial information in the data independently, and fail to make full use of the potential of spatio-temporal information. To address this issue, this paper proposes a novel integration method that combines sensor embeddings and temporal representation networks, effectively exploiting spatio-temporal dynamics. In addition, the graph neural network is introduced to skillfully simulate the complexity of multi-source heterogeneous data. By applying a dual loss function—consisting of a reconstruction loss and a prediction loss—we further improve the accuracy of anomaly detection. This strategy not only promotes the ability to learn normal behavior patterns from historical data, but also significantly improves the predictive ability of the model, making anomaly detection more accurate. Experimental results on four multi-source sensor datasets show that our proposed method performs better than the existing models. In addition, our approach enhances the ability to interpret anomaly detection by analyzing the sensors associated with the detected anomalies.

Funder

Shaanxi Key Laboratory

Key Laboratory of the Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3