Schizophrenia Animal Modeling with Epidermal Growth Factor and Its Homologs: Their Connections to the Inflammatory Pathway and the Dopamine System

Author:

Sotoyama Hidekazu12ORCID,Namba Hisaaki13,Tohmi Manavu3,Nawa Hiroyuki13

Affiliation:

1. Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan

2. Department of Physiology, School of Medicine, Niigata University, Niigata 951-8122, Japan

3. Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan

Abstract

Epidermal growth factor (EGF) and its homologs, such as neuregulins, bind to ErbB (Her) receptor kinases and regulate glial differentiation and dopaminergic/GABAergic maturation in the brain and are therefore implicated in schizophrenia neuropathology involving these cell abnormalities. In this review, we summarize the biological activities of the EGF family and its neuropathologic association with schizophrenia, mainly overviewing our previous model studies and the related articles. Transgenic mice as well as the rat/monkey models established by perinatal challenges of EGF or its homologs consistently exhibit various behavioral endophenotypes relevant to schizophrenia. In particular, post-pubertal elevation in baseline dopaminergic activity may illustrate the abnormal behaviors relevant to positive and negative symptoms as well as to the timing of this behavioral onset. With the given molecular interaction and transactivation of ErbB receptor kinases with Toll-like receptors (TLRs), EGF/ErbB signals are recruited by viral infection and inflammatory diseases such as COVID-19-mediated pneumonia and poxvirus-mediated fibroma and implicated in the immune–inflammatory hypothesis of schizophrenia. Finally, we also discuss the interaction of clozapine with ErbB receptor kinases as well as new antipsychotic development targeting these receptors.

Funder

Grant-in-Aid for Scientific Research on Innovative Area “Multiscale Brain”

Grant-in-Aid for Challenging Exploratory Research

Grant-in-Aid for Scientific Research

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3