Specific Human Milk Oligosaccharides Differentially Promote Th1 and Regulatory Responses in a CpG-Activated Epithelial/Immune Cell Coculture

Author:

Zuurveld Marit1ORCID,Ayechu-Muruzabal Veronica1ORCID,Folkerts Gert1ORCID,Garssen Johan12ORCID,van‘t Land Belinda23,Willemsen Linette E. M.1ORCID

Affiliation:

1. Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands

2. Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands

3. Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

Abstract

Proper early life immune development creates a basis for a healthy and resilient immune system, which balances immune tolerance and activation. Deviations in neonatal immune maturation can have life-long effects, such as development of allergic diseases. Evidence suggests that human milk oligosaccharides (HMOS) possess immunomodulatory properties essential for neonatal immune maturation. To understand the immunomodulatory properties of enzymatic or bacterial produced HMOS, the effects of five HMOS (2′FL, 3FL, 3′SL, 6′SL and LNnT), present in human milk have been studied. A PBMC immune model, the IEC barrier model and IEC/PBMC transwell coculture models were used, representing critical steps in mucosal immune development. HMOS were applied to IEC cocultured with activated PBMC. In the presence of CpG, 2′FL and 3FL enhanced IFNγ (p < 0.01), IL10 (p < 0.0001) and galectin-9 (p < 0.001) secretion when added to IEC; 2′FL and 3FL decreased Th2 cell development while 3FL enhanced Treg polarization (p < 0.05). IEC were required for this 3FL mediated Treg polarization, which was not explained by epithelial-derived galectin-9, TGFβ nor retinoic acid secretion. The most pronounced immunomodulatory effects, linking to enhanced type 1 and regulatory mediator secretion, were observed for 2′FL and 3FL. Future studies are needed to further understand the complex interplay between HMO and early life mucosal immune development.

Funder

TKI Health Holland

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3