Soil Organic Matter Degradation in Long-Term Maize Cultivation and Insufficient Organic Fertilization

Author:

Balík Jiří1,Kulhánek Martin1ORCID,Černý Jindřich1,Sedlář Ondřej1,Suran Pavel1

Affiliation:

1. Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic

Abstract

Soil organic matter carbon (CSOM) compounds degradation was observed in long-term field experiments with silage maize monoculture. Over a period of 26 years, the content of carbon in topsoil decreased by 22% in control unfertilized plots compared to 25% and 26% in treatments fertilized annually with mineral nitrogen. With annual wheat straw application (together with mineral N), the content of CSOM decreased by 8%. Contrary to that, the annual application of farmyard manure resulted in a CSOM increase of 16%. The ratio of carbon produced by maize related to total topsoil CSOM content ranged between 8.1–11.8%. In plots with mineral N fertilization, this ratio was always higher than in the unfertilized control plots. With the weaker soil extraction agent (CaCl2), the ratio of carbon produced by maize was determined to be 17.9–20.7%. With stronger extraction agent (pyrophosphate) it was only 10.2–14.6%. This shows that maize produced mostly unstable carbon compounds. Mineral N application resulted in stronger mineralization of original and stable organic matter compared to the unfertilized control. However, the increase of maize-produced carbon content in fertilized plots did not compensate for the decrease of “old” organic matter. As a result, a tendency to decrease total CSOM content in plots with mineral N applied was observed.

Funder

European Regional Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3