A Magnetic-Controlled Flexible Continuum Robot with Different Deformation Modes for Vascular Interventional Navigation Surgery

Author:

Wang Zili1,Weng Ding1,Li Zhaoxin1,Chen Lei1,Ma Yuan1,Wang Jiadao1

Affiliation:

1. State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China

Abstract

A magnetic-controlled flexible continuum robot (MFCR) is a kind of continuum robot with small-size and flexibility that deforms under controlled magnetic fields, which makes MFCRs easy to fit in special sizes and designs and provides them with the ability to feasibly arrive at the desired area through certain blood vessel bifurcation. The magnetic drive method is suitable for the miniaturization of soft continuum robots but shows limitations in realizing high flexibility. To achieve miniaturization and high flexibility, in this work, the deformation schemes of a magnetic-controlled flexible continuum robot (MFCR) are proposed, simulated, and experimentally validated. The proposed MFCR includes a soft steering part made of a silicone elastomer with uniformly dispersed NdFeB powder which has a specific magnetization direction. With the actuation of different magnetic fields, the proposed MFCR shows three different deformation modes (C-shape, J-shape, and S-shape) and high flexibility. By using the potential energy model combined with magnetic and elastic potential energy, the quasi-static deformation model of MFCR is built. Through various simulations and experiments, we analyzed and predicted different deformation modes. The results from the experiments demonstrate the accuracy of the deformation model. The results indicate that the MFCR has good control precision and deformation performance with potential applications in robot-assisted minimally invasive surgery.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3