Doxycycline Attenuates Cancer Cell Growth by Suppressing NLRP3-Mediated Inflammation

Author:

Alsaadi Mohammad,Tezcan GulcinORCID,Garanina Ekaterina E.,Hamza ShaimaaORCID,McIntyre Alan,Rizvanov Albert A.ORCID,Khaiboullina Svetlana F.

Abstract

NLR family pyrin domain containing 3 (NLRP3) inflammasome formation is triggered by the damaged mitochondria releasing reactive oxygen species. Doxycycline was shown to regulate inflammation; however, its effect on NLRP3 in cancer remains largely unknown. Therefore, we sought to determine the effect of doxycycline on NLRP3 regulation in cancer using an in vitro model. NLRP3 was activated in a prostate cancer cell line (PC3) and a lung cancer cell line (A549) before treatment with doxycycline. Inflammasome activation was assessed by analyzing RNA expression of NLRP3, Pro-CASP-1, and Pro-IL1β using RT-qPCR. Additionally, NLPR3 protein expression and IL-1β secretion were analyzed using Western blot and ELISA, respectively. Tumor cell viability was determined using Annexin V staining and a cell proliferation assay. Cytokine secretion was analyzed using a 41Plex assay for human cytokines. Data were analyzed using one-way ANOVA model with Tukey’s post hoc tests. Doxycycline treatment decreased NLRP3 formation in PC3 and A549 cells compared to untreated and LPS only treated cells (p < 0.05). Doxycycline also decreased proliferation and caused cell death through apoptosis, a response that differed to the LPS-Nigericin mediated pyroptosis. Our findings suggest that doxycycline inhibits LPS priming of NLRP3 and reduces tumor progression through early apoptosis in cancer.

Funder

Council on grants of the President of the Russian Federation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3