Assessment of the Possibility of Reducing Energy Consumption and Environmental Pollution in the Steel Wire Manufacturing Process

Author:

Suliga Maciej1ORCID,Wartacz Radosław2,Kostrzewa Joanna3ORCID,Hawryluk Marek4ORCID

Affiliation:

1. Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-201 Czestochowa, Poland

2. Independent Researcher, 1b Mykanowska Str., 42-240 Kościelec, Poland

3. The Jacob of Paradies University in Gorzów Wielkopolski, Teatralna 25 Str., 66-400 Gorzów Wielkopolski, Poland

4. Department of Metal Forming and Metrology, Wroclaw University of Science and Technology, 5 Lukasiewicza Str., 50-371 Wrocław, Poland

Abstract

This paper describes research on the influence the technology of zinc-coated steel wire manufacturing has on the energy and force parameters of the drawing process, energy consumption and zinc expenditure. In the theoretical part of the paper, the theoretical work and drawing power were calculated. Calculations of the electric energy consumption have shown that usage of the optimal wire drawing technology results in a 37% drop in energy consumption, which in the course of a single year translates to savings equal to 13 TJ. This, in turn, results in the decrease of CO2 emissions by tons and a total decrease of the eco-costs by approximately EUR 0.5 mln. Drawing technology also influences the losses of the zinc coating and CO2 emissions. Properly adjusted parameters of the wire drawing technology allow obtaining a zinc-coating that is 100% thicker, translating to 265 tons of zinc, whose production generates 900 tons of CO2 and incurs eco-costs equal to EUR 0.6 mln. Optimal parameters for drawing, from the perspective of decreased CO2 emissions during the zinc-coated steel wire manufacturing, are as follows: usage of the hydrodynamic drawing dies, angle of the die reducing zone α = 5°, and drawing speed of 15 m/s.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3