Study on the Stability of Functionally Graded Simply Supported Fluid-Conveying Microtube under Multi-Physical Fields

Author:

Ma Tao,Mu Anle

Abstract

The stability of functionally graded simply supported fluid-conveying microtubes under multiple physical fields was studied in this article. The strain energy of the fluid-conveying microtubes was determined based on strain gradient theory, and the governing equation of the functionally graded, simply supported, fluid-conveying microtube was established using Hamilton’s principle. The Galerkin method was used to solve the governing equation, and the effects of the dimensionless microscale parameters, temperature difference, and magnetic field intensity on the stability of the microtube were investigated. The results showed that the dimensionless microscale parameters have a significant impact on the stability of the microtube. The smaller the dimensionless microscale parameters were, the stronger the microscale effect of the material and the better the microtube stability became. The increase in the temperature difference decreased the eigenfrequency and critical velocity of the microtube and reduced the microtube stability. However, the magnetic field had the opposite effect. The greater the magnetic field intensity was, the greater the eigenfrequency and critical velocity were, and the more stable the microtube became.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3