Development of an Application That Implements a Brain–Computer Interface to an Upper-Limb Motor Assistance Robot to Facilitate Active Exercise in Patients: A Feasibility Study

Author:

Yamamoto Tadashi12,Hamaguchi Toyohiro1ORCID

Affiliation:

1. Department of Rehabilitation, Graduate School of Health Sciences, Saitama Prefectural University, 820 Sannomiya, Koshigaya 343-8540, Saitama, Japan

2. Tokokai Toda Chuo Rehabilitation Hospital, 4-1-29 Nizominami, Toda 335-0016, Saitama, Japan

Abstract

In this study, we aimed to evaluate the effectiveness of a brain robot in rehabilitation that combines motor imagery (MI), robotic motor assistance, and electrical stimulation. Thirteen in-patients with severe post-stroke hemiplegia underwent electroencephalography (EEG), measured according to the international 10–20 method, during MI. The dicephalus robotic system (DiC) was activated by detecting event-related desynchronization (ERD) using the Markov switching model (MSM) and relative power (RP) from the EEG of the motor cortex (C3 and C4). The reaction times (the time between ERD detection and DiC activation) of the MSM and RP were compared using Wilcoxon’s signed rank sum test. ERD was detected in all 13 and 12 patients with the MSM and RP, respectively. The DiC reaction time for the ERD detection process was significantly shorter for the MSM (13.02 ± 0.16 s) than for the RP (19.95 ± 7.45 s) (W = 9, p = 0.0037). The results of this study suggest that ERD responses can be detected in the motor cortex during MI in patients with severe upper-extremity paralysis; the MSM is more effective than the RP in detecting ERD when the EEG signal is used as a switch to activate the robot, and the reaction time to detect the signal is shorter.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3