A Cross-Modal Dynamic Attention Neural Architecture to Detect Anomalies in Data Streams from Smart Communication Environments

Author:

Demertzis Konstantinos1ORCID,Rantos Konstantinos1ORCID,Magafas Lykourgos2ORCID,Iliadis Lazaros3ORCID

Affiliation:

1. Department of Computer Science, School of Science, International Hellenic University, 65404 Kavala, Greece

2. Department of Physics, School of Science, Kavala Campus, International Hellenic University, 65404 Kavala, Greece

3. Department of Civil Engineering, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract

Detecting anomalies in data streams from smart communication environments is a challenging problem that can benefit from novel learning techniques. The Attention Mechanism is a very promising architecture for addressing this problem. It allows the model to focus on specific parts of the input data when processing it, improving its ability to understand the meaning of specific parts in context and make more accurate predictions. This paper presents a Cross-Modal Dynamic Attention Neural Architecture (CM-DANA) by expanding on state-of-the-art techniques. It is a novel dynamic attention mechanism that can be trained end-to-end along with the rest of the model using multimodal data streams. The attention mechanism calculates attention weights for each position in the input data based on the model’s current state by a hybrid method called Cross-Modal Attention. Specifically, the proposed model uses multimodal learning tasks where the input data comes from different cyber modalities. It combines the relevant input data using these weights to produce an attention vector in order to detect suspicious abnormal behavior. We demonstrate the effectiveness of our approach on a cyber security anomalies detection task using multiple data streams from smart communication environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3