The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review

Author:

Shajari Shaghayegh12ORCID,Kuruvinashetti Kirankumar34,Komeili Amin34ORCID,Sundararaj Uttandaraman1

Affiliation:

1. Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada

2. Center for Bio-Integrated Electronics (CBIE), Querrey Simpson Institute for Bioelectronics (QSIB), Northwestern University, Evanston, IL 60208, USA

3. Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

4. Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

Disease diagnosis and monitoring using conventional healthcare services is typically expensive and has limited accuracy. Wearable health technology based on flexible electronics has gained tremendous attention in recent years for monitoring patient health owing to attractive features, such as lower medical costs, quick access to patient health data, ability to operate and transmit data in harsh environments, storage at room temperature, non-invasive implementation, mass scaling, etc. This technology provides an opportunity for disease pre-diagnosis and immediate therapy. Wearable sensors have opened a new area of personalized health monitoring by accurately measuring physical states and biochemical signals. Despite the progress to date in the development of wearable sensors, there are still several limitations in the accuracy of the data collected, precise disease diagnosis, and early treatment. This necessitates advances in applied materials and structures and using artificial intelligence (AI)-enabled wearable sensors to extract target signals for accurate clinical decision-making and efficient medical care. In this paper, we review two significant aspects of smart wearable sensors. First, we offer an overview of the most recent progress in improving wearable sensor performance for physical, chemical, and biosensors, focusing on materials, structural configurations, and transduction mechanisms. Next, we review the use of AI technology in combination with wearable technology for big data processing, self-learning, power-efficiency, real-time data acquisition and processing, and personalized health for an intelligent sensing platform. Finally, we present the challenges and future opportunities associated with smart wearable sensors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3