Identification and Characterization of a Novel Thermostable GDSL Lipase LipGt6 from Geobacillus thermoleovorans H9

Author:

Qin Lirong123,Lin Min123,Zhan Yuhua23,Jiang Shijie1ORCID,Zhou Zhengfu23,Wang Jin123

Affiliation:

1. College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China

2. National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Lipases are versatile biocatalysts for various biological reactions. In the detergent industry, lipases must exhibit high activity in environments with high temperature, high pH values, metal ions, and organic solvents. Therefore, researchers are intensively searching for more stable and efficient lipases. A new thermophilic lipase, LipGt6, was identified in Geobacillus thermoleovorans H9, a new thermophilic strain isolated from ultrahigh-temperature compost. A structural model of LipGt6 was constructed using an esterase from Geobacillus thermodenitrificans as a template, and site-directed mutagenesis confirmed the predicted active site residues. LipGt6 exhibited the highest activity towards medium- and long-chain fatty acids (C8–C14), and the optimum temperature and pH were 50 °C and 9.0, respectively. LipGt6 was found to be thermostable up to 70 °C. In the presence of 1% H2O2 and sodium deoxycholate, LipGt6 retained 70 to 75% relative activity. These findings reveal that LipGt6 is potentially useful for the industrial production of detergent. Based on comparison of the amino acid sequences, the enzyme belongs to a new subfamily called lipolytic enzyme family II. The catalytic residues Ser and His were more critical than Asp, and the Asp221 catalytic residue is not likely critical for the lipolytic reaction of LipGt6.

Funder

National Key R&D Program of China

Third Xinjiang Scientific Expedition

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3