Development of Heart Simulator and Analysis of Valve Dysfunction in Tricuspid Regurgitation

Author:

Joo Hwan Yi1ORCID,Ahn Seokyoung1ORCID,Jung Su-Jin2ORCID,Chon Min-Ku34

Affiliation:

1. School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea

2. Department of Research Strategy Team, R&D Center, TAU MEDICAL Inc., Yangsan 50612, Republic of Korea

3. Department of Internal Medicine, School of Medicine, Pusan National University, Busan 46241, Republic of Korea

4. Department of Cardiology, Cardiovascular Center, Yangsan Hospital, Yangsan 50612, Republic of Korea

Abstract

Tricuspid regurgitation (TR) resulting from valve abnormalities necessitates precise diagnostic tools and interventions. We employed a simulated heart movement device to examine the performance of heart valve functions and analyzed internal pressure changes to provide a quantitative guide for TR treatment. We developed a simulator capable of replicating the flow profile, mimicking natural heart movements, with sensors installed for measuring internal pressure changes. We conducted an ex vivo experiment on a porcine heart to assess tricuspid valve functionality. An endoscope was installed, with a sensor and endoscopic images to detect abnormalities. TR became evident when the heart rate spectrum exceeded an average of 85.2 bpm (standard deviation, 1.3 bpm) and showed an amplitude higher than an average of 12.3 mmHg (standard deviation, 3.2 mmHg). This critical threshold consistently indicated TR onset. The application of the Pivot-TR attenuated this specific spectral area. We confirmed TR disappearance by reducing the intensity of the Tricuspid Regurgitation Generator or employing the Pivot-TR. The Pivot-TR’s ability to attenuate specific spectral areas associated with TR onset and its effectiveness in restoring normal heart functionality has implications for managing and treating TR, particularly that resulting from age-related structural changes in the heart.

Funder

Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3