A Swiss-Roll-Type Methanol Mini-Steam Reformer for Hydrogen Generation with High Efficiency and Long-Term Durability

Author:

Tseng Fan-Gang1ORCID,Chiu Wei-Cheng1,Huang Po-Jung1

Affiliation:

1. Department of Engineering and System Science, National Tsing Hua University, Hshinchu 300, Taiwan

Abstract

This paper proposes a Swiss-roll-type mini-reformer employing a copper–zinc catalyst for high-efficient SRM process. Although the commercially available copper–zinc catalysts commonly used in cylindrical-type reformers provide decent conversion rates in the short term, their long-term durability still requires improvement, mainly due to temperature variations in the reformer, catalyst loading, and thermal sintering issues. This Swiss-roll-shaped mini-reformer is designed to improve thermal energy preservation/temperature uniformity by using dual spiral channels to improve the long-term durability while maintaining methanol-reforming efficiency. It was fabricated on a copper plate that was 80 mm wide, 80 mm long, and 4 mm high with spiral channels that were 2 mm deep, 4 mm wide, and 350 mm long. To optimize the design and reformer operation, the catalyst porosity, gas hourly speed velocity (GHSV), operation temperature, and fuel feeding rate are investigated. Swiss-roll-type reformers may require higher driving pressures but can provide better thermal energy preservation and temperature uniformity, posing a higher conversion rate for the same amount of catalyst when compared with other geometries. By carefully adjusting the catalyst bed porosity, locations, and catalyst loading amount as well as other conditions, an optimized gas hourly space velocity (GHSV) can be obtained (14,580 mL/g·h) and lead to not only a high conversion rate (96%) and low carbon monoxide generation rate (0.98%) but also a better long-term durability (decay from 96% to 88.12% after 60 h operation time) for SRM processes. The decay rate, 0.13%/h, after 60 h of operation, is five-folds lower than that (0.67%/h, 0.134%/h) of a commercial cylindrical-type fixed-bed reactor with a commercial catalyst.

Funder

Ministry of Science and Technology (MOST) of Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3