The Effect of Soil-Structure Interaction on the Seismic Response of Structures Using Machine Learning, Finite Element Modeling and ASCE 7-16 Methods

Author:

Ali Tabish1ORCID,Eldin Mohamed Nour1,Haider Waseem2ORCID

Affiliation:

1. Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

2. Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Seismic design of structures taking into account the soil-structure interaction (SSI) methods is considered to be more efficient, cost effective, and safer then fixed-base designs, in most cases. Finite element methods that use direct equations to solve SSI problems are very popular, but the prices of the software are very high, and the analysis time is very long. Even though some low-cost and efficient software are available, the structures are mostly analyzed for the superstructure only, without using the geotechnical properties of the ground and its interaction effects. The reason is that a limited number of researchers have the knowledge of both geotechnical and structural engineering to model accurately the coupled soil-structure system. However, a cost-effective, less time-consuming and easy-to-implement technique is to analyze the structure along with ground properties using machine learning methods. The database techniques using machine learning are robust and provide reliable results. Thus, in this study, machine learning techniques, such as artificial neural networks and support vector machines are used to investigate the effect of soil-structure interactions on the seismic response of structures for different earthquake scenarios. Four frame structures are investigated by varying the soil and seismic properties. In addition, varying sample sizes and different optimization algorithms are used to obtain the best machine learning framework. The input parameters contain both soil and seismic properties, while the outputs consist of three engineering demand parameters. The network is trained using three and five-story buildings and tested on a three-story building with mass irregularity and a four-story building. Furthermore, the proposed method is compared with the dynamic responses obtained using fixed-base and ASCE 7-16 SSI methods. The proposed machine learning method showed better results compared with fixed-base and ASCE 7-16 methods with the nonlinear time history analysis results as a reference.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3