Development of a Rapid Fluorescent Diagnostic System to Detect Subtype H9 Influenza A Virus in Chicken Feces

Author:

Tuong Hien Thi,Jeong Ju Hwan,Choi Young KiORCID,Park Hyun,Baek Yun Hee,Yeo Seon-Ju

Abstract

The circulation of the H9N2 virus results in significant economic losses in the poultry industry, and its zoonotic transmission highlights the need for a highly sensitive and rapid diagnostic and detection system for this virus. In this study, the performance of lateral flow test strips for a fluorescent immunochromatographic test (FICT) was optimized for the diagnosis of H9N2 virus-infected animal samples. The novel monoclonal antibodies (McAbs) against influenza A H9 viruses were developed, and two categories of McAbs with linear and conformational epitopes were compared for the performance of rapid diagnostic performance in the presence of feces sample at different time points (2, 4, and 6 days) post-infection (dpi). The limit of detection (LOD) of FICT and Kd values were comparable between linear and conformational epitope McAbs. However, superior performance of linear epitope McAbs pairs were confirmed by two animal studies, showing the better diagnostic performance showing 100% relative sensitivity in fecal samples at 6 dpi although it showed less than 80% sensitivity in early infection. Our results imply that the comparable performance of the linear epitope McAbs can potentially improve the diagnostic performance of FICT for H9N2 detection in feces samples. This highly sensitive rapid diagnostic method can be utilized in field studies of broiler poultry and wild birds.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3