Microstructure Evolution and Mechanical Properties of Extruded AlSiCuFeMnYb Alloy

Author:

Ji Xiaohu123,Xiong Junjie123,Zhou Lihua3

Affiliation:

1. School of Mechanical and Vehicle Engineering, West Anhui University, Yueliangdao Road, No. 1, Lu’an 237010, China

2. Innovation Platform of High-Performance Complex Manufacturing Intelligent Decision and Control, West Anhui University, Yueliangdao Road, No. 1, Lu’an 237010, China

3. Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, HFUT (Hefei University of Technology), No. 193 Tunxi Road, Baohe District, Hefei 230002, China

Abstract

This study investigates the impact of varying extrusion ratios on the microstructure and mechanical properties of AlSiCuFeMnYb alloy. Following hot extrusion, significant enhancements are observed in the microstructure of the cast rare earth aluminium alloy. Within the cross-sectional microstructure, the α-Al phase is reduced in size, and its dendritic morphology is eliminated. The morphology of the eutectic Si phase transitions from long strips to short rods, fine fibres, or granular forms. Similarly, the Fe-rich phase changes from a coarse skeletal and flat noodle shape to small strips and short skeletal forms resembling Chinese characters. The CuAl2 phase evolves from large blocks to smaller blocks and granular forms, while the Yb (Ytterbium)-rich rare earth phase shifts from large blocks to smaller, more uniformly distributed blocks. In the longitudinal section, the structure aligns into strips along the extrusion direction, with the spacing between these strips decreasing as the extrusion ratio increases. At an extrusion ratio of 22.56, the alloy demonstrates superior mechanical properties with a tensile strength of 325.50 MPa, a yield strength of 254.44 MPa, a hardness of 143.90 HV, and an elongation of 15.47%. These represent improvements of 27.8%, 36.5%, 38.9%, and 236.4%, respectively, compared with the as-cast rare earth alloy. In addition, the fracture surface of the extruded rare earth alloy exhibits obvious ductile fracture characteristics. Additionally, the alloy undergoes dynamic recrystallisation and dislocation entanglement during hot extrusion. The emergence of a twinned Si phase and a dynamically precipitated nanoscale CuAl2 phase are critical for enhancing deformation strengthening, modification strengthening, and dynamic precipitation strengthening of the extruded alloys.

Funder

High-level Talents Research Project of West Anhui University

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3